Nonlinear Chebyshev Approximations Having Restricted Ranges

Ryszard Smarzewski
Department of Numerical Methods, M. Curie-Sklodowska University, 20-031 Lublin, Poland

Communicated by G. Meinardus
Received June 20, 1977

1. Introduction

Let $C(X)$ denote the space of real continuous functions defined on a compact Hausdorff space X endowed with the uniform norm

$$
\|f\|=\sup \{|f(x)|: x \in X\}
$$

For any function f defined on X, denote

$$
Z_{f}=\{x \in X: f(x)=0\}
$$

and

$$
M_{f}=\{x \in X:|f(x)|=\|f\|\}
$$

Let l, u be given functions from X into the extended real line $[-\infty, \infty$, with $l<u$. Additionally, let G be a proper subset of $C(X)$.

Definition 1. $g \in G$ is said to be a best approximation to $f \in C(X)$ in G if

$$
\|f-g\| \leqslant\|f-h\|
$$

for all $h \in G$.
Denote

$$
G^{*}=\{g \in G: l \leqslant g \leqslant u\} .
$$

Definition 2. A best approximation $g \in G^{*}$ to f in G^{*} is said to be a best restricted approximation.

Best restricted approximations have been investigated recently in wide variety of papers (see [6] for references).

Definition 3. A subset G of $C(X)$ has the weak betweenness property if for any distinct elements g and h of G and for every nonempty closed
subset D of X such that $\min \{|h(x)-g(x)|: x \in D\}>0$ there exists a sequence $\left\{g_{i}\right\}$ in G such that
(i) $\lim _{i \rightarrow \infty}\left\|g-g_{i}\right\|=0$ and
(ii) $\min \left\{\left[h(x)-g_{i}(x)\right]\left[g_{i}(x)-g(x)\right]: x \in D\right\}>0$ for all i.

As we noted in [4], subsets having the weak betweenness property include, e.g., subsets with the betweenness property, asymptotically convex and having a degree. In this paper we shall give a characterization theorem of Kolmogorov type for the best restricted approximation by the elements of a subset G having the weak betweenness property. Additionally, we shall obtain some converse theorem, i.e., if the necessity of the characterization theorem is true for all $f \in C(X)$ then some subset of G has the weak betweenness property. These two results will be obtained under additional assumptions that l is an upper semicontinuous function and u is a lower semicontinuous function into the extended real line. We note that our assumptions about the restrictions l and u are different from Dunham's assumptions in [1]. However, if the functions l and u satisfy five restrictions (i)-(v) in [5, p. 242] then, of course, l and u are upper and lower semicontinuous functions, respectively.

2. Main Results

At first, we give a sufficient condition for $g \in G^{*}$ to be a best restricted approximation for f in G^{*}. This does not require any assumptions about the structure of the set G and the properties of the restrictions l and u.

Theorem 1. A sufficient condition for $g \in G^{*}$ to be the best restricted approximation to $f \in C(X)$ in G^{*} is that the inequality

$$
\begin{equation*}
\max \left\{[g(x)-h(x)] \operatorname{sign}[f(x)-g(x)]: x \in M_{f-g}\right\} \geqslant 0 \tag{1}
\end{equation*}
$$

be satisfied for every $h \in G^{*}$.
Proof. From the continuity of functions f, g, h on X and ($g-h$) $\operatorname{sign}(f-g)$ on M_{f-g}, and the compactness of X and M_{f-g} we have, by (1)

$$
\begin{aligned}
\|f-g\| & \leqslant\|f-g\|+\max \left\{[g(x)-h(x)] \operatorname{sign}[f(x)-g(x)]: x \in M_{f-g}\right\} \\
& =[f(z)-g(z)] \operatorname{sign}[f(z)-g(z)]+[g(z)-h(z)] \operatorname{sign}[f(z)-g(z)] \\
& =[f(z)-h(z)] \operatorname{sign}[f(z)-g(z)] \leqslant\|f-h\|
\end{aligned}
$$

for all $h \in G^{*}$, where $z \in M_{f-g} \cap M_{(g-h) \text { sign }(f-g)}$ and the domain of the function $(g-h) \operatorname{sign}(f-g)$ is restricted to M_{f-g}. This completes the proof.

Let us define now the subset G_{g} of G by
$G_{g}=\left\{h \in G: h(x)>g(x)\right.$ and $h(y)<g(y)$ for each $x \in Z_{l-g}$ and $\left.y \in Z_{u-g}\right\}$,
where g is a fixed element of G^{*}. In the following we shall use the well-known properties of lower and upper semicontinuous functions in the extended real line $[-\infty, \infty]$ (see, for example, [2, pp. 73-77]). If G has the weak betweenness property then the following theorem is true:

Theorem 2. Let land u be, respectively, upper and lower semicontinuous functions into the extended real line. Then a necessary condition for $g \in G^{*}$ to be the best restricted approximation to $f \in C(X)$ in G^{*} is that inequality (1) be satisfied for all $h \in G_{g}$.

Proof. Let us suppose, on the contrary, that there exists an element $h \in G_{g}$ such that

$$
\begin{equation*}
\max \left\{[g(x)-h(x)] \operatorname{sign}[f(x)-g(x)]: x \in M_{f-g}\right\}<0 \tag{2}
\end{equation*}
$$

Since $l \leqslant g \leqslant u$, then

$$
Z_{l-g}=\{x \in X: l(x)-g(x) \geqslant 0\}
$$

and

$$
Z_{u-g}=\{x \in X: u(x)-g(x) \leqslant 0\}
$$

This and the upper semicontinuity of l and the lower semicontinuity of u imply that the sets Z_{l-g} and Z_{u-g} are closed.

Thus, from $h \in G_{g}$ it follows

$$
\begin{equation*}
\min \left\{h(x)-g(x): x \in Z_{l-g}\right\}>0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\min \left\{g(x)-h(x): x \in Z_{u-g}\right\}>0 \tag{4}
\end{equation*}
$$

Additionally, from (2) we have

$$
\begin{align*}
& \min \left\{|g(x)-h(x)|: x \in M_{f-g}\right\} \\
& \quad \geqslant \min \left\{[g(x)-h(x)] \operatorname{sign}[f(x)-g(x)]: x \in M_{f-g}\right\}>0 . \tag{5}
\end{align*}
$$

Let us define the closed set D by

$$
D=M_{f-g} \cup Z_{l-g} \cup Z_{u-g}
$$

From (3)-(5) we have

$$
\min \{|g(x)-h(x)|: x \in D\}>0
$$

Since G has the weak betweenness property, there exists the sequence $\left\{g_{i}\right\}$ in G such that

$$
\begin{equation*}
\lim _{i \rightarrow \infty}\left\|g-g_{i}\right\|=0 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\min \left\{\left[h(x)-g_{i}(x)\right]\left[g_{i}(x)-g(x)\right]: x \in D\right\}>0 . \tag{7}
\end{equation*}
$$

Referring to (6), let n be an integer such that $\left\|g-g_{i}\right\|<\|f-g\|$ for all $i>n$.

Hence, from (2), (5), and (7) we obtain

$$
\min \left\{\left|g_{i}(x)-g(x)\right|: x \in M_{f-g}\right\}>0
$$

and

$$
\operatorname{sign}[f(x)-g(x)]=\operatorname{sign}\left[f(x)-g_{i}(x)\right]=\operatorname{sign}\left[g_{i}(x)-g(x)\right]
$$

for every $i>n$ and $x \in M_{f-g}$. This implies that

$$
\begin{equation*}
\left|f(x)-g_{i}(x)\right|=|f(x)-g(x)|-\left|g_{i}(x)-g(x)\right|<\|f-g\| \tag{8}
\end{equation*}
$$

for these i and x.
If $M_{f-g}=X$ then the proof is completed. Otherwise, the continuity arguments imply that there exists an open set $N \supset M_{f-g}$ such that (8) holds for all $i>n$ and $x \in N$. Since the set $V=X \backslash N$ is compact and $M_{f-g} \cap V \neq \varnothing$ then

$$
\delta_{1}=\max \{|f(x)-g(x)|: x \in V\}<\|f-g\| .
$$

Let $n_{1} \geqslant n$ be so selected that the inequality

$$
\left\|g-g_{i}\right\|<\|f-g\|-\delta_{1}
$$

hold for all $i>n_{1}$. Therefore, we have

$$
\begin{aligned}
\left|f(x)-g_{i}(x)\right| & \leqslant|f(x)-g(x)|+\left|g(x)-g_{i}(x)\right| \\
& <\delta_{1}+\|f-g\|-\delta_{1}=\|f-g\|
\end{aligned}
$$

for all $i>n_{1}$ and $x \in V$. From this inequality and from that for $x \in N$ it follows that

$$
\begin{equation*}
\left\|f-g_{i}\right\|<\|f-g\| \tag{9}
\end{equation*}
$$

for all $i>n_{1}$.
Now, for the completion of the proof, it is sufficient to show that there exists at least one index $i>n_{1}$ such that $g_{i} \in G^{*}$. To this purpose define

$$
\delta_{2}=\min \{u(x)-l(x): x \in X\} .
$$

From the compactness of X, the inequality $l<u$, and the lower semicontinuity of $(u-l)$ it follows that $\delta_{2}>0$. Referring to (6), we select an integer $n_{2} \geqslant n_{1}$ such that

$$
\left\|g-g_{i}\right\|<\delta_{2}
$$

for all $i>n_{2}$. Because $h \in G_{g}$, using (7) we have for each $x \in Z_{l-g}$ and $y \in Z_{u-g}$

$$
g_{i}(x)-l(x)=g_{i}(x)-g(x)>0
$$

and

$$
u(y)-g_{i}(y)>0
$$

Additionally, for these x, y and $i>n_{2}$ we obtain

$$
u(x)-g_{i}(x)=u(x)-g(x)-\left[g_{i}(x)-g(x)\right] \geqslant \delta_{2}-\left\|g_{i}-g\right\|>0
$$

and

$$
g_{i}(y)-l(y) \geqslant \delta_{2}-\left\|g-g_{i}\right\|>0 .
$$

Therefore, we have established that

$$
\begin{equation*}
l(x)<g_{i}(x)<u(x) \tag{10}
\end{equation*}
$$

for each $x \in Z_{l-g} \cup Z_{u-g}$ and $i>n_{2}$.
If $X=Z_{l-g} \cup Z_{u-g}$ then the proof is completed. Otherwise, from the upper semicontinuity of l and lower semicontinuity of u it follows that there exists an open set $N \supset Z_{l-g} \cup Z_{u-g}$ such that inequality (10) holds for each $x \in N$. Let us set $V=X \backslash N$. Because V is a closed set and $V \cap\left(Z_{l-g} \cup Z_{u-q}\right)=\varnothing$ then by the lower semicontinuity of functions $u-g$ and $g-l$ we have

$$
\delta_{3}=\min \{u(x)-g(x): x \in V\}>0
$$

and

$$
\delta_{4}=\min \{g(x)-l(x): x \in V\}>0
$$

Let $n_{3} \geqslant n_{2}$ be so chosen that

$$
\left\|g-g_{i}\right\|<\min \left(\delta_{3}, \delta_{4}\right)
$$

for each $i>n_{3}$. Thus, for each $x \in V$ and $i>n_{3}$ we have

$$
u(x)-g_{i}(x)=u(x)-g(x)+\left[g(x)-g_{i}(x)\right]>\delta_{3}-\left\|g-g_{i}\right\|>0
$$

and

$$
g_{i}(x)-l(x)>\delta_{4}-\left\|g-g_{i}\right\|>0 .
$$

Combining these two inequalities with that for $x \in N$ we conclude from (9) that every function g_{i} lies in G^{*} for $i>n_{3}$ and is a better restricted approximation to f than g. This completes the proof.

Note that, in general, the set G_{g} does not contain the set G^{*}. Therefore, the sufficient condition for $g \in G^{*}$ to be a best restricted approximation in G^{*} is not a necessary condition.

Unfortunately, the following simple example shows that the set G_{g} in Theorem 2 can not be changed on the set \bar{G}_{g} defined by
$\bar{G}_{g}=\left\{h \in G: h(x) \geqslant g(x)\right.$ and $h(y) \leqslant g(y)$ for each $x \in Z_{l-g}$ and $\left.y \in Z_{u-g}\right\}$.
Example 1. Let $X=[-1,1], G=\{\alpha x: \alpha \in R\}, l(x)=-\infty, u(x)=x^{2}$, and $f(x)=1-x$. Then G^{*} contains only the zero function $g=0$, which is the best restricted approximation to f. Additionally, $G_{g}=\varnothing, \bar{G}_{g}=G$, and $M_{f-g}=\{-1\}$. It is obvious, that inequality (1) does not hold for $h(x)=x \in \bar{G}_{g}$.

However, Example 1 does not answer the interesting question: Whether the set G_{g} may be changed on $G_{g} \cup\left(\bar{G}_{g} \cap G^{*}\right)=G_{g} \cup G^{*}$. At present, we do not know whether this is true or not. Therefore, the problem whether necessary and sufficient conditions exist for $g \in G^{*}$ to be the best restricted approximation in G^{*} is left open. The answer to this question is yes, particularly when G has the betweenness property. This follows easily from the fact that G^{*} has also the betweenness property.

Definition 4. Let the two restriction functions $l<u$ be given. If B and V are closed subsets of X such that $B \cap V=\varnothing$ then the following two restrictions r and s defined by

$$
\begin{aligned}
r(x) & =-\infty, & & x \in X \backslash B \\
& =l(x), & & x \in B,
\end{aligned}
$$

and

$$
\begin{aligned}
s(x) & =\infty, & & x \in X \backslash V, \\
& =u(x), & & x \in V
\end{aligned}
$$

are called admissible restrictions.
Note that r and s are, respectively, upper and lower semicontinuous functions, if l and u are such ones, too. In the following theorem we shall additionally assume that X is a space with the metric $|\cdot|$.

Theorem 3. Let restrictions l and u be as in Theorem 2. If Theorem 2 holds for each $f \in C(X)$ and all admissible restrictions to l and u then the set $p \cup G_{p}$ has the weak betweenness property for each $p \in G^{*}$.

Proof. Let us suppose that g and h are two distinct elements in $p \cup G_{p}$ and D is a nonempty closed subset of X such that

$$
\begin{equation*}
\delta_{1}=\min \{|g(x)-h(x)|: x \in D\}>0 \tag{11}
\end{equation*}
$$

Let λ_{i} be a decreasing sequence of positive numbers convergent to zero. To prove this theorem it sufficient to show that there exists a sequence $\left\{g_{i}\right\}$ in $p \cup G_{p}$ such that

$$
\begin{equation*}
\left\|g-g_{i}\right\|<\lambda_{i} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\min \left\{\left[h(x)-g_{i}(x)\right]\left[g_{i}(x)-g(x)\right]: x \in D\right\}>0 \tag{13}
\end{equation*}
$$

for all integers i.
At first, suppose that $g=p \in G^{*}$ and $h \in G_{g}$. Define the function $f_{1} \in C(X)$ by

$$
f_{1}(x)=g(x)+\epsilon_{1} \frac{\rho\left(x, Z_{g-h}\right)}{\rho\left(x, Z_{g-h}\right)+\rho(x, B)} \operatorname{sign}[h(x)-g(x)]
$$

where

$$
\begin{aligned}
& 0<\epsilon_{1}<\frac{1}{2} \min \left(\lambda_{1}, \delta_{1}\right) \\
& B=D \cup Z_{l-g} \cup Z_{u-g}
\end{aligned}
$$

and

$$
\begin{aligned}
\rho(x, E) & =1 & & \text { if } E=\varnothing \\
& =\inf \{|x-e|: e \in E\}, & & \text { otherwise } .
\end{aligned}
$$

Because

$$
\begin{aligned}
& \max \left\{[g(x)-h(x)] \operatorname{sign}\left[f_{1}(x)-g(x)\right]: x \in B\right\} \\
& \quad=-\min \{|h(x)-g(x)|: x \in B\}=-\delta_{1}<0
\end{aligned}
$$

and $B=M_{f_{1}-g}$, from Theorem 2 it follows that g is not the best restricted approximation to f_{1} in G, i.e., there exists the function $g_{1} \in G^{*}$ such that

$$
\left\|f_{1}-g_{1}\right\|<\left\|f_{1}-g\right\|=\epsilon_{1} .
$$

Hence, we obtain

$$
\left\|g-g_{1}\right\| \leqslant\left\|f_{1}-g_{1}\right\|+\left\|f_{1}-g\right\|<\lambda_{1}
$$

which establishes (12) for $i=1$. Additionally, since $\left|f_{1}(x)-g_{1}(x)\right|<$ $\left|f_{1}(x)-g(x)\right|$ for all $x \in B=M_{f_{1}-g}$ then we have

$$
\operatorname{sign}\left[g_{1}(x)-g(x)\right]=\operatorname{sign}\left[f_{1}(x)-g(x)\right]=\operatorname{sign}[h(x)-g(x)]
$$

for all $x \in B$. Hence, it follows that

$$
\begin{aligned}
\min \{ & \left.\left\{h(x)-g_{1}(x)\right]\left[g_{1}(x)-g(x)\right]: x \in B\right\} \\
= & \min \left\{\left|f_{1}(x)-g(x)-\left[f_{1}(x)-g_{1}(x)\right]\right|\left(|h(x)-g(x)|-\left|g_{1}(x)-g(x)\right|\right)\right. \\
& : x \in B\} \\
\geqslant & \min \left\{\left(\epsilon_{1}-\left|f_{1}(x)-g_{1}(x)\right|\right)\left(\delta_{1}-\left\|f_{1}-g_{1}\right\|-\left\|f_{1}-g\right\|\right): x \in B\right\} \\
\geqslant & \left(\epsilon_{1}-\left\|f_{1}-g_{1}\right\|\right)^{2}>0
\end{aligned}
$$

which establishes (13) for $i=1$. Denote $\delta_{2}=\min \left\{\left|g_{1}(x)-g(x)\right|: x \in B\right\}>0$. Now, from this last inequality and from the fact that $h \in G_{g}$ we have for each $x \in Z_{l-g}$ and $y \in Z_{u-g}$ that

$$
g_{1}(x)-l(x)=g_{1}(x)-g(x)>0
$$

and

$$
u(y)-g_{1}(y)>0,
$$

i.e., g_{1} lies in G_{g}. Finally, replacing $g_{i-2}\left(g_{0}=h\right)$ by g_{i-1}, λ_{i-1} by $\lambda_{i}, \delta_{i-1}$ by δ_{i}, and ϵ_{i-1} by ϵ_{i} we may analogously construct by induction the functions f_{i}, $i=2,3, \ldots$ such that $B=M_{f_{i}-g}$ and that g are not the best restricted approximation to f_{i}. Additionally, denoting the better restricted approximation to f_{i} by g_{i} we may prove that (12) and (13) are satisfied and that $g_{i} \in G_{g}$. This completes the proof in case $g=p$.
Secondly, suppose that g and h lie in G_{p} and (11) holds. Define two functions r and s by

$$
\begin{aligned}
r(x) & =-\infty, & & x \in X \backslash Z_{l-p} \\
& =l(x), & & x \in Z_{l-p},
\end{aligned}
$$

and

$$
\begin{aligned}
s(x) & =\infty, & & x \in X \backslash Z_{u-p}, \\
& =u(x), & & x \in Z_{u-p} .
\end{aligned}
$$

Obviously, r and s are admissible restrictions. Let us denote

$$
H^{*}=\{u \in G: r \leqslant u \leqslant s\}
$$

and
$H_{g}=\left\{u \in G: u(x)>r(x)\right.$ and $u(y)<s(y)$ for each $x \in Z_{r-g}$ and $\left.y \in Z_{s-g}\right\}$.
We immediately have $g \in H^{*}$ and $h \in H_{g}=G_{g}$. Therefore changing G^{*} on H^{*} and taking into consideration what has been said about the case $g=p$ we may prove the existence of the sequence $\left\{g_{i}\right\}$ in H_{g} such that (12) and (13) hold. This completes the proof.

3. Concluding Remarks

Now, let us briefly consider the best restricted approximation by elements of the set

$$
G^{0}=\{h \in G: l<h<u\} .
$$

We may obtain, after trivial modifications of the proofs of Theorems 2 and 3, the following results. If G has the weak betweenness property, then the following theorem holds:

Theorem 4. Let land u be, respectively, upper and lower semicontinuous functions into the extended real line. Then a necessary and sufficient condition for $g \in G^{0}$ to be the best restricted approximation to $f \in C(X)$ in G^{0} is that inequality (1) be satisfied for all $h \in G^{0}$.

Theorem 5. Let X be a metric space and l, u be as in the previous theorem. If Theorem 4 holds for each $f \in C(X)$ then G^{0} has the weak betweenness property.

These two results also follow immediately from [3] and from the fact that the subset G^{0} of G has the weak betweenness property, if G has this property, too. Finally, we note that it is possible to generalize our results to the case when X is not compact and $C(X)$ is changed on the space $C_{b}(X)$ containing all real continuous and bounded functions defined on X. In this case the set M_{f-g} must be changed in Theorem 2 into

$$
M_{f-g}(\epsilon)=\{x \in X:|f(x)-g(x)| \geqslant\|f-g\|-\epsilon\}
$$

where $\epsilon>0$ is sufficiently small. Additionally, we ought to change the maximum on the supremum in all previous statements and assume that X in Theorem 3 is a normal space. These generalizations do not require new ideas in proofs in view of the considerations given in Section 2 and [4].

References

1. C. B. Dunham, Chebyshev approximation with restricted ranges by families with the betweenness property, J. Approximation Theory 11 (1974), 254-259.
2. E. McShane and T. Botts, "Real Analysis," Van Nostrand, Princeton, N. J., 1959.
3. R. Smarzewski, A note on characterization of family with weak betweenness property, submitted.
4. R. Smarzewski, Some remarks on nonlinear Chebyshev approximation to functions defined on normal space, J. Approximation Theory 24 (1978), 169-175.
5. G. D. Taylor, Approximation by functions having restricted ranges, III, SIAM J. Math. Anal. 27 (1969), 241-248.
6. G. D. Taylor, Uniform approximation with side conditions, (1973), 495-503.
