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1. INTRODUCTION

Let C(X) denote the space of real continuous functions defined on a
compact Hausdorff space X endowed with the uniform norm

IIIII = sup{! I(x) I: x EX}.

For any function I defined on X, denote

Zf = {x E X:/(x) = O}

and

M f = {x E X: II(x) I = II/II}.

Let I, u be given functions from X into the extended real line [- 00, <X)],
with I < u. Additionally, let G be a proper subset of C(X).

DEFINITION 1. g EGis said to be a best approximation tolE C(X) in G if

III - g II ~ III - h II

for all hE G.
Denote

G* = {g E G: I :( g ~ u}.

DEFINITION 2. A best approximation g E G* to I in G* is said to be a
best restricted approximation.

Best restricted approximations have been investigated recently in wide
variety of papers (see [6] for references).

DEFINITION 3. A subset G of C(X) has the weak betweenness property
if for any distinct elements g and h of G and for every nonempty closed
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subset D of X such that min{1 hex) - g(x)I : xED} > 0 there exists a se
quence {gil in G such that

(i) limi_oo II g - gj II = 0 and

(ii) min{[h(x) - gj(x)][gj(x) - g(x)]: xED} > 0 for all i.

As we noted in [4], subsets having the weak betweenness property include,
e.g., subsets with the betweenness property, asymptotically convex and
having a degree. In this paper we shall give a characterization theorem of
Kolmogorov type for the best restricted approximation by the elements
of a subset G having the weak betweenness property. Additionally, we shall
obtain some converse theorem, i.e., if the necessity of the characterization
theorem is true for allfE C(X) then some subset of G has the weak between
ness property. These two results will be obtained under additional assump
tions that I is an upper semicontinuous function and u is a lower semi
continuous function into the extended real line. We note that our assumptions
about the restrictions I and u are different from Dunham's assumptions in [1].
However, if the functions I and u satisfy five restrictions (i)-(v) in [5, p. 242]
then, of course, I and u are upper and lower semicontinuous functions,
respectively.

2. MAIN RESULTS

At first, we give a sufficient condition for g E G* to be a best restricted
approximation for fin G*. This does not require any assumptions about the
structure of the set G and the properties of the restrictions I and u.

THEOREM 1. A sufficient condition for g E G* to be the best restricted
approximation to fE C(X) in G* is that the inequality

max{[g(x) - hex)] sign[f(x) - g(x)]: x E M f - g } ;?: 0 (1)

be satisfied for every hE G*.

Proof From the continuity of functions f, g, h on X and (g - h)
sign(f - g) on M f - g , and the compactness of X and M f - g we have, by (1)

IIf - gil :s;; Ilf - gil + max{[g(x) - hex)] sign[f(x) - g(x)]: x E M f - g }

= [fez) - g(z)] sign[f(z) - g(z)] + [g(z) - h(z)] sign[f(z) - g(z)]

= [fez) - h(z)] sign[f(z) - g(z)] :s;; Ilf - h II
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for all hE G*, where Z E M t - g n M(g-h)Sign(t-g) and the domain of the
function (g - h) sign(f - g) is restricted to M t - g • This completes the
proof. I

Let us define now the subset Gg of G by

Gg = {h E G: h(x) > g(x) and h(y) < g(y) for each x E Zl_g and y E ZU_g},

where g is a fixed element of G*. In the following we shall use the well-known
properties of lower and upper semicontinuous functions in the extended
real line [-00, 00] (see, for example, [2, pp. 73-77]). If G has the weak
betweenness property then the following theorem is true:

THEOREM 2. Let I and u be, respectively, upper and lower semicontinuous
functions into the extended real line. Then a necessary condition for g E G*
to be the best restricted approximation to fE C(X) in G* is that inequality (1)
be satisfied for all h EGg .

Proof Let us suppose, on the contrary, that there exists an element
hE Gg such that

max{[g(x) - h(x)] sign[f(x) - g(x)]: x E M t - g } < O. (2)

Since I ~ g ~ u, then

Zl_g = {x E X: I(x) - g(x) ~ O}

and
ZU_g = {x E X: u(x) - g(x) ~ O}.

This and the upper semicontinuity of I and the lower semicontinuity of u
imply that the sets Zl_g and ZU-g are closed.

Thus, from h E Gg it follows

and

min{h(x) - g(x): x E Zl_g} > 0 (3)

(4)min{g(x) - h(x): x E Z,,_g} > O.

Additionally, from (2) we have

min{J g(x) - h(x)I: x E M t - g }

~ min{[g(x) - h(x)] sign[f(x) - g(x)]: x E M t - g} > O. (5)

Let us define the closed set D by

D = M t - g U Zl_g U ZU_g .

From (3)-(5) we have

min{J g(x) - h(x)I: xED} > O.
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Since G has the weak betweenness property, there exists the sequence {gi}
in G such that

and

lim II g - gi II = 0
i....:,oo

min{[h(x) - gi(X)][gi(X) - g(x)]: xED} > O.

(6)

(7)

Referring to (6), let n be an integer such that II g - gi II < Ilf - g II for all
i > n.

Hence, from (2), (5), and (7) we obtain

min{1 gi(X) - g(x) I: x E M f - g } > 0

and

sign[f(x) - g(x)] = sign[f(x) - gi(X)] = sign[g;(x) - g(x)]

for every i > n and x E M f - 9 • This implies that

I/(x) - gi(X) I = I/(x) - g(x) I - Ig;(x) - g(x) I < III - gil (8)

for these i and x.
If M f - 9 = X then the proof is completed. Otherwise, the continuity

arguments imply that there exists an open set N-:J M f - g such that (8) holds
for all i > n and x E N. Since the set V = X\N is compact and M f - g n V =1= 0

then
81 = max{l/(x) - g(x)l: x E V} < III - gil·

Let n1 ~ n be so selected that the inequality

hold for all i > n1 • Therefore, we have

f/(x) - gi(X) I ~ I/(x) - g(x)I + Ig(x) - g;(x)I

< 81 + III - gil - 81 = III - gil

for all i > n1 and x E V. From this inequality and from that for x E N it
follows that

Ilf - gi II < III - gil (9)

for all i > n1 •

Now, for the completion of the proof, it is sufficient to show that there
exists at least one index i > n1 such that gi E G*. To this purpose define

82 = min{u(x) - lex): x EX}.
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From the compactness of X, the inequality 1< u, and the lower semi
continuity of (u - I) it follows that D2 > O. Referring to (6), we select an
integer n2 ~ n1 such that

for all i > n2 • Because hE Gg , using (7) we have for each x E ZI_g and
y E' ZU-g

gi(X) - l(x) = g,(x) - g(x) > 0

and
u(y) - g,(y) > o.

Additionally, for these x, y and i > n2 we obtain

u(x) - g,(x) = u(x) - g(x) - [gi(X) - g(x)] ~ D2 - II gi - gil > 0

and
g,(y) - I(y) ~ D2 - II g - gi II > o.

Therefore, we have established that

I(x) < g;{x) < u(x) (10)

for each x E ZI_g U ZU_g and i > n2 •

If X = Z!-g U ZU_g then the proof is completed. Otherwise, from the
upper semicontinuity of I and lower semicontinuity of u it follows that
there exists an open set N"J ZI-g U ZU_g such that inequality (10) holds for
each x E N. Let us set V = X\N. Because V is a closed set and
V n (ZI-g U ZU-g) = 0 then by the lower semicontinuity of functions
u - g and g - 1we have

Da = min{u(x) - g(x): x E V} > 0
and

D4 = min{g(x) - I(x): x E V} > o.
Let na ~ n2 be so chosen that

II g - gi II < min(8a , 84)

for each i > na • Thus, for each x E V and i > na we have

u(x) - g,(x) = u(x) - g(x) + [g(x) - gi(X)] > 8a - II g - gi II > 0

and
gi(X) - I(x) > 84 - II g - gi II > O.

Combining these two inequalities with that for x E N we conclude from (9)
that every function gi lies in G* for i > na and is a better restricted approxi
mation to f than g. This completes the proof. I
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Note that, in general, the set Gg does not contain the set G*. Therefore,
the sufficient condition for g E G* to be a best restricted approximation
in G* is not a necessary condition.

Unfortunately, the following simple example shows that the set Gg in
Theorem 2 can not be changed on the set Gg defined by

Gg = {h E G: hex) ~ g(x) and hey) ~ g(y) for each x E Zl_g and y E ZU_g}.

EXAMPLE I. Let X = [-I, 1], G = {(Xx: (X E R}, I(x) = - 00, u(x) = x 2
,

andf(x) = 1 - x. Then G* contains only the zero function g = 0, which is
the best restricted approximation to f Additionally, Gg = 0, Gg = G,
and M t - g = {-I}. It is obvious, that inequality (1) does not hold for
hex) = XE Gg •

However, Example 1 does not answer the interesting question: Whether
the set Gg may be changed on Gg U (Gg n G*) = Gg U G*. At present,
we do not know whether this is true or not. Therefore, the problem whether
necessary and sufficient conditions exist for g E G* to be the best restricted
approximation in G* is left open. The answer to this question is yes, parti
cularly when G has the betweenness property. This follows easily from the
fact that G* has also the betweenness property.

DEFINITION 4. Let the two restriction functions I < u be given. If B
and V are closed subsets of X such that B n V = 0 then the following
two restrictions rand s defined by

rex) = -00, x E X\B,
= I(x), xEB,

and
sex) = 00, X E X\V,

= u(x), xE V,

are called admissible restrictions.
Note that rand s are, respectively, upper and lower semicontinuous

functions, if I and u are such ones, too. In the following theorem we shall
additionally assume that X is a space with the metric I . I.

THEoREM 3. Let restrictions I and u be as in Theorem 2. If Theorem 2
holds for each f E C(X) and all admissible restrictions to I and u then the set
p U GlI has the weak betweenness property for each p E G*.

Proof Let us suppose that g and h are two distinct elements in pUG11

and D is a nonempty closed subset of X such that

81 = min{1 g(x) - h(x)1: xED} > O. (II)
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Let '\ be a decreasing sequence of positive numbers convergent to zero.
To prove this theorem it sufficient to show that there exists a sequence {g;}
in p U Gp such that

(12)

and
min{[h(x) - gi(X)][g;(x) - g(x)]: xED} > 0 (13)

for all integers i.
At first, suppose that g = p E G* and h E Gg • Define the functionh E C(X)

by

iI(x) = g(x) + 101 ( i(X')~-h)( B) sign[h(x) - g(x)],
p x, g-h Px,

where

o < 101 < l min(A.1 , a1),

B = D U Zl_g U ZU-g ,

and

Because

p(x, E) = 1
= inf{l x - e I: e E E},

if E = 0,

otherwise.

max{[g(x) - hex)] sign[f1(x) - g(x)]: x E B}
= - min{1 hex) - g(x)l: x E B} = -a1 < 0

and B = M f _g , from Theorem 2 it follows that g is not the best restricted
1

approximation to iI in G, i.e., there exists the function gl E G* such that

Ilfl - gl II < IliI - gil = 101.

Hence, we obtain

Ilg - gIll ~ Ilfl - gIll + IliI - gil < A.1

which establishes (12) for i = 1. Additionally, since IiI(x) - gl(X) I <
Ihex) - g(x)I for all x E B = M f _g then we have

1

sign[gl(x) - g(x)] = sign[iI(x) - g(x)] = sign[h(x) - g(x)]

for all x E B. Hence, it follows that

min{[h(x) - gl(X)][gl(X) - g(x)]: x E B}
= min{lf1(x) - g(x) - [f1(X) - gl(X)] I (I hex) - g(x) I - Igl(X) - g(x)l)

: x E B}
;?o min{(El - liI(x) - gl(x)I)(al - lliI - gIli - IliI - g 10: x E B}
;?o (101 - !liI - gII1)2 > 0
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which establishes (13) for i = 1. Denote 82 = min{1 gix) - g(x)l: x E B} > O.
Now, from this last inequality and from the fact that hE Gg we have for
each x E Zl_g and y E ZU-g that

g1(X) - {(x) = g1(X) - g(x) > 0
and

u(y) - g1(Y) > 0,

i.e., g1 lies in Gg • Finally, replacing gi-2 (go = h) by gi-1' Ai- 1 by Ai' 8i- 1 by
8i , and €i-1 by €i we may analogously construct by induction the functions Ii ,
i = 2, 3,... such that B = M f ._g and that g are not the best restricted
approximation to Ii. Additio~ally, denoting the better restricted approxi
mation to Ii by gi we may prove that (12) and (13) are satisfied and that
gi E Gg • This completes the proof in case g = p.

Secondly, suppose that g and h lie in Gp and (11) holds. Define two
functions rand s by

r(x) = -00, x E X\Zl_P'

= {(x), XE Zl-p,
and

s(x) = 00, X E X\Zu_p,

= u(x), X E Zu-p'

Obviously, rand s are admissible restrictions. Let us denote

H* = {u E G: r ~ u ~ s}
and

Hg = {u E G: u(x) > r(x) and u(y) < s(y) for each x E Zr_g and y E ZS_g}.

We immediately have g E H* and hE H g = Gg • Therefore changing G*
on H* and taking into consideration what has been said about the case
g = p we may prove the existence of the sequence {gil in H g such that (12)
and (13) hold. This completes the proof. I

3. CONCLUDING REMARKS

Now, let us briefly consider the best restricted approximation by elements
of the set

GO = {h E G: { < h < u}.

We may obtain, after trivial modifications of the proofs of Theorems 2 and 3,
the following results. If G has the weak betweenness property, then the
following theorem holds:
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THEOREM 4. Let I and u be, respectively, upper and lower semicontinuous
functions into the extended real line. Then a necessary and sufficient condition
for g E GO to be the best restricted approximation to f E C(X) in GO is that
inequality (1) be satisfied for all h E GO.

THEOREM 5. Let X be a metric space and I, u be as in the previous theorem.
If Theorem 4 holds for each f E C(X) then GO has the weak betweenness
property.

These two results also follow immediately from [3] and from the fact
that the subset GO of G has the weak betweenness property, if G has this
property, too. Finally, we note that it is possible to generalize our results
to the case when X is not compact and C(X) is changed on the space Cb(X)
containing all real continuous and bounded functions defined on X. In this
case the set M t - g must be changed in Theorem 2 into

Mt_g(E) = {x E X: If(x) - g(x) [ ~ Ilf - gil - E},

where E > 0 is sufficiently small. Additionally, we ought to change the
maximum on the supremum in all previous statements and assume that X
in Theorem 3 is a normal space. These generalizations do not require new
ideas in proofs in view of the considerations given in Section 2 and [4].
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